添加项目文件。

This commit is contained in:
2025-12-07 20:25:27 +08:00
parent 52ad3bd1e4
commit b866365968
31 changed files with 16642 additions and 0 deletions

View File

@@ -0,0 +1,280 @@
PCB SLOT槽孔数量计算方法,同CAM350孔数一致 实现方法
最近有好几个写脚本的朋友问我,SLOT槽孔孔的如何计算的要求孔数与CAM350孔数保持一致。
前几年通过在CAM350里面不断测试结果是CAM 350中SLOT槽孔孔与孔之间最高位凸位高度值为0.0127mm
这里将计算方法分享一下,下次有同样的问题可以看此篇文章即可得到答案了。哈。。。。
通过这个凸位值就很好的计算出SLOT槽孔数了,弧型SLOT槽的原理也是同样的。
一.SLOT槽为线段求解SLOT槽孔数  (Mod类在后面代码中)
/// <summary>
/// 求线Line slot槽孔数 同CAM350一致)
/// </summary>
/// <param name="l"></param>
/// <param name="tol_">凸位高度值</param>
/// <returns></returns>
public int l_2hole_count(gL l, double tol_ = 0.0127)
{
double r, center_L, hole_L;
r = l.width / 1000 * 0.5;
center_L = p2p_di(l.ps, l.pe);
hole_L = Math.Sqrt(Math.Pow(r, 2) - Math.Pow(r - tol_, 2)) * 2;
return (int)Math.Abs(Math.Floor(-center_L / hole_L)) + 1;
}
/// <summary>
/// 返回两点之间欧氏距离
/// </summary>
/// <param name="p1"></param>
/// <param name="p2"></param>
/// <returns></returns>
public double p2p_di(gPoint p1, gPoint p2)
{
return Math.Sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}
二.SLOT槽为弧段求解SLOT槽孔数  (Mod类在后面代码中)
/// <summary>
/// 求弧Arc slot槽孔数 同CAM350一致)
/// </summary>
/// <param name="a"></param>
/// <param name="tol_">凸位高度值</param>
/// <returns></returns>
public int a_2hole_count(gA a, double tol_ = 0.0127)
{
double r, center_L, hole_L;
r = a.width / 1000 * 0.5;
center_L = a_Length(a);
hole_L = Math.Sqrt(Math.Pow(r, 2) - Math.Pow(r - tol_, 2)) * 2;
return (int)Math.Abs(Math.Floor(-center_L / hole_L)) + 1;
}
/// <summary>
/// 求弧Arc长度
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
public double a_Length(gA a)
{
return pi / 180 * p2p_di(a.pc, a.ps) * a_Angle(a);
}
/// <summary>
/// 求弧Arc圆心角 //后续改进 用叉积 与3P求角度求解 验证哪个效率高
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
public double a_Angle(gA a)
{
double angle_s, angle_e, angle_sum;
if (a.ccw)
{
angle_s = p_ang(a.pc, a.pe);
angle_e = p_ang(a.pc, a.ps);
}
else
{
angle_s = p_ang(a.pc, a.ps);
angle_e = p_ang(a.pc, a.pe);
}
if (angle_s == 360) { angle_s = 0; }
if (angle_e >= angle_s)
angle_sum = 360 - Math.Abs(angle_s - angle_e);
else
angle_sum = Math.Abs(angle_s - angle_e);
return angle_sum;
}
三.使用的Mod类
     线 mod类型
/// <summary>
/// Line 数据类型
/// </summary>
public struct gL
{
public gL(double ps_x, double ps_y, double pe_x, double pe_y, double width_)
{
this.ps = new gPoint(ps_x, ps_y);
this.pe = new gPoint(pe_x, pe_y);
this.negative = false;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gL(gPoint ps_, gPoint pe_, double width_)
{
this.ps = ps_;
this.pe = pe_;
this.negative = false;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gL(gPoint ps_, gPoint pe_, string symbols_, double width_)
{
this.ps = ps_;
this.pe = pe_;
this.negative = false;
this.symbols = symbols_;
this.attribut = string.Empty;
this.width = width_;
}
public gPoint ps;
public gPoint pe;
public bool negative;//polarity-- positive negative
public string symbols;
public string attribut;
public double width;
public static gL operator +(gL l1, gPoint move_p)
{
l1.ps += move_p;
l1.pe += move_p;
return l1;
}
public static gL operator +(gL l1, gPP move_p)
{
l1.ps += move_p.p;
l1.pe += move_p.p;
return l1;
}
public static gL operator +(gL l1, gP move_p)
{
l1.ps += move_p.p;
l1.pe += move_p.p;
return l1;
}
public static gL operator -(gL l1, gPoint move_p)
{
l1.ps -= move_p;
l1.pe -= move_p;
return l1;
}
public static gL operator -(gL l1, gPP move_p)
{
l1.ps -= move_p.p;
l1.pe -= move_p.p;
return l1;
}
public static gL operator -(gL l1, gP move_p)
{
l1.ps -= move_p.p;
l1.pe -= move_p.p;
return l1;
}
}
     弧 mod类型
/// <summary>
/// ARC 数据类型
/// </summary>
public struct gA
{
public gA(double ps_x, double ps_y, double pc_x, double pc_y, double pe_x, double pe_y, double width_, bool ccw_)
{
this.ps = new gPoint(ps_x, ps_y);
this.pc = new gPoint(pc_x, pc_y);
this.pe = new gPoint(pe_x, pe_y);
this.negative = false;
this.ccw = ccw_;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gA(gPoint ps_, gPoint pc_, gPoint pe_, double width_, bool ccw_=false)
{
this.ps = ps_;
this.pc = pc_;
this.pe = pe_;
this.negative = false;
this.ccw = ccw_;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gPoint ps;
public gPoint pe;
public gPoint pc;
public bool negative;//polarity-- positive negative
public bool ccw; //direction-- cw ccw
public string symbols;
public string attribut;
public double width;
public static gA operator +(gA arc1, gPoint move_p)
{
arc1.ps += move_p;
arc1.pe += move_p;
arc1.pc += move_p;
return arc1;
}
public static gA operator +(gA arc1, gPP move_p)
{
arc1.ps += move_p.p;
arc1.pe += move_p.p;
arc1.pc += move_p.p;
return arc1;
}
public static gA operator +(gA arc1, gP move_p)
{
arc1.ps += move_p.p;
arc1.pe += move_p.p;
arc1.pc += move_p.p;
return arc1;
}
public static gA operator -(gA arc1, gPoint move_p)
{
arc1.ps -= move_p;
arc1.pe -= move_p;
arc1.pc -= move_p;
return arc1;
}
public static gA operator -(gA arc1, gPP move_p)
{
arc1.ps -= move_p.p;
arc1.pe -= move_p.p;
arc1.pc -= move_p.p;
return arc1;
}
public static gA operator -(gA arc1, gP move_p)
{
arc1.ps -= move_p.p;
arc1.pe -= move_p.p;
arc1.pc -= move_p.p;
return arc1;
}
}
     点 mod类型
/// <summary>
/// 点 数据类型 (XY)
/// </summary>
public struct gPoint
{
public gPoint(gPoint p_)
{
this.x = p_.x;
this.y = p_.y;
}
public gPoint(double x_val, double y_val)
{
this.x = x_val;
this.y = y_val;
}
public double x;
public double y;
public static gPoint operator +(gPoint p1, gPoint p2)
{
p1.x += p2.x;
p1.y += p2.y;
return p1;
}
public static gPoint operator -(gPoint p1, gPoint p2)
{
p1.x -= p2.x;
p1.y -= p2.y;
return p1;
}
}

View File

@@ -0,0 +1,448 @@
PCB genesis Slot槽转钻孔(不用G85命令)实现方法
PCB钻Slot槽一般都采用G85命令钻槽孔,而采用G85命令工程CAM无法准确的知道Slot槽钻多少个孔,并不能决定钻槽孔的顺序,因为采用G85命令钻孔密度与钻槽顺序由钻机本身决定的.在这里介绍一种如果不用G85命令,如何将Slot槽生成多个钻孔。
一.我们先了解一下G85命令钻槽
   钻孔顺序
 
 
      孔密度
连一篇文章有关于Slot槽孔数计算方式  https://www.cnblogs.com/pcbren/p/9379178.html
二.求解思路
     1.通过孔密度,求出孔与孔中心距离
     2.再以Slot槽的一端做为起点增量值(孔中心距),方位角(Slot槽的方位角),逐个求出下一个钻孔位置.直到到达Slot槽终点节止。
三.C#简易代码实现:
1.Slot槽转钻孔代码(这里段代码实现将Slot槽转为钻孔,钻孔顺序是一个SLOT槽依次逐个从头钻到头尾,和G85命令钻槽顺序不一样)
string drilllayer = "drl";
gLayer layer = g.getFEATURES($"{drilllayer}", g.STEP, g.JOB, "mm", true);
List<gPP> pList = new List<gPP>();
foreach (var line in layer.Llist)
{
var HoleCenterDi = calc2.p_Convex(line.width * 0.0005);
pList.AddRange(calc2.l_2Plist(line, HoleCenterDi, true));
}
foreach (var arc in layer.Alist)
{
var HoleCenterDi = calc2.p_Convex(arc.width * 0.0005);
pList.AddRange(calc2.a_2Plist(arc, HoleCenterDi,2, true));
}
addCOM.pad(pList);
View Code
2.计算函数
/// <summary>
/// 通过孔半径与凸高位求 孔中心距
/// </summary>
/// <param name="Rradius">孔半径</param>
/// <param name="tol_">凸位高度值</param>
/// <returns></returns>
public double p_Convex(double Rradius, double tol_ = 0.0127)
{
return Math.Sqrt(Math.Pow(Rradius, 2) - Math.Pow(Rradius - tol_, 2)) * 2;
}
/// <summary>
/// 线Line 转点P组集
/// </summary>
/// <param name="l"></param>
/// <param name="len_">点的间距</param>
/// <returns></returns>
public List<gPP> l_2Plist(gL l, double len_ = 0.1d, bool is_avg = false)
{
List<gPP> list_point = new List<gPP>();//采用优先占用线两端 如果有从线的一端出发增量间距后续再做更改
double line_len = l_Length(l);
gPP tempP;
tempP.p = l.ps;
tempP.symbols = l.symbols;
tempP.width = l.width;
list_point.Add(tempP);
int avg_count = (int)(Math.Ceiling(line_len / len_)) - 1;
if (avg_count > 1)
{
if (is_avg)
len_ = line_len / avg_count;
double angle_ = p_ang(l.ps, l.pe);
for (int i = 0; i < avg_count; i++)
{
tempP = p_val_ang(tempP, len_, angle_);
list_point.Add(tempP);
}
}
tempP.p = l.pe;
list_point.Add(tempP);
return list_point;
}
/// <summary>
/// 求方位角
/// </summary>
/// <param name="ps"></param>
/// <param name="pe"></param>
/// <returns></returns>
public double p_ang(gPoint ps, gPoint pe)
{
double a_ang = Math.Atan((pe.y - ps.y) / (pe.x - ps.x)) / Math.PI * 180;
//象限角 转方位角 计算所属象限 并求得方位角
if (pe.x >= ps.x && pe.y >= ps.y) //↗ 第一象限
{
return a_ang;
}
else if (!(pe.x >= ps.x) && pe.y >= ps.y) // ↖ 第二象限
{
return a_ang + 180;
}
else if (!(pe.x >= ps.x) && !(pe.y >= ps.y)) //↙ 第三象限
{
return a_ang + 180;
}
else if (pe.x >= ps.x && !(pe.y >= ps.y)) // ↘ 第四象限
{
return a_ang + 360;
}
else
{
return a_ang;
}
}//求方位角
/// <summary>
/// 求增量坐标
/// </summary>
/// <param name="ps">起点</param>
/// <param name="val">增量值</param>
/// <param name="ang_direction">角度</param>
/// <returns></returns>
public gPP p_val_ang(gPP ps, double val, double ang_direction)
{
gPP pe = ps;
pe.p.x = ps.p.x + val * Math.Cos(ang_direction * Math.PI / 180);
pe.p.y = ps.p.y + val * Math.Sin(ang_direction * Math.PI / 180);
return pe;
}
/// <summary>
/// 求线Line长度
/// </summary>
/// <param name="l"></param>
/// <param name="is_calc_width"></param>
/// <returns></returns>
public double l_Length(gL l, bool is_calc_width = false)
{
if (is_calc_width)
return Math.Sqrt((l.ps.x - l.pe.x) * (l.ps.x - l.pe.x) + (l.ps.y - l.pe.y) * (l.ps.y - l.pe.y)) + l.width / 1000;
else
return Math.Sqrt((l.ps.x - l.pe.x) * (l.ps.x - l.pe.x) + (l.ps.y - l.pe.y) * (l.ps.y - l.pe.y));
}
/// <summary>
/// 弧Arc 转点P组集
/// </summary>
/// <param name="a"></param>
/// <param name="val_">此数值表示:分段数值</param>
/// <param name="type_">代表值数值类型 【0】弧长 【1】角度 【2】弦长 </param>
/// <param name="is_avg">是否平均分布 </param>
/// <returns></returns>
public List<gPP> a_2Plist(gA a, double val_ = 0.1d, int type_ = 0, bool is_avg = false)
{
List<gPP> list_point = new List<gPP>();
gPP tempP;
tempP.p = a.ps;
tempP.symbols = a.symbols;
tempP.width = a.width;
list_point.Add(tempP);
double avg_count;
double angle_val = 0;
double rad_ = p2p_di(a.pc, a.pe);
double sum_alge = a_Angle(a);
if (type_ == 1) // 【1】角度
{
angle_val = val_;
avg_count = (int)(Math.Ceiling(sum_alge / angle_val)) - 1; // 总角度/单角度
}
else if (type_ == 2) //【2】弦长
{
angle_val = Math.Asin(val_ / (rad_ * 2)) * 360 / pi;
avg_count = (int)(Math.Ceiling(sum_alge / angle_val)) - 1; // 总角度/单角度
}
else // 【0】弧长
{
angle_val = val_ * 180 / (pi * rad_);
avg_count = (int)(Math.Ceiling(sum_alge / angle_val)) - 1; // 总角度/单角度
//avg_count = (int)(Math.Ceiling(a_Lenght(a) / val_)) - 1; // 或 总弧长/单弧长
}
if (is_avg)
angle_val = sum_alge / avg_count;
if (avg_count > 1)
{
gPP centerP = tempP;
centerP.p = a.pc;
double angle_s = p_ang(a.pc, a.ps);
if (a.ccw) { angle_val = 0 - angle_val; }
for (int i = 1; i < avg_count; i++)
{
tempP = p_val_ang(centerP, rad_, angle_s - angle_val * i);
list_point.Add(tempP);
}
}
if (!(zero(a.ps.x - a.pe.x) && zero(a.ps.y - a.pe.y)))
{
tempP.p = a.pe;
list_point.Add(tempP);
}
return list_point;
}
/// <summary>
/// 返回两点之间欧氏距离
/// </summary>
/// <param name="p1"></param>
/// <param name="p2"></param>
/// <returns></returns>
public double p2p_di(gPoint p1, gPoint p2)
{
return Math.Sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}
/// <summary>
/// 求弧Arc圆心角 //后续改进 用叉积 与3P求角度求解 验证哪个效率高
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
public double a_Angle(gA a)
{
double angle_s, angle_e, angle_sum;
if (a.ccw)
{
angle_s = p_ang(a.pc, a.pe);
angle_e = p_ang(a.pc, a.ps);
}
else
{
angle_s = p_ang(a.pc, a.ps);
angle_e = p_ang(a.pc, a.pe);
}
if (angle_s == 360) { angle_s = 0; }
if (angle_e >= angle_s)
angle_sum = 360 - Math.Abs(angle_s - angle_e);
else
angle_sum = Math.Abs(angle_s - angle_e);
return angle_sum;
}
View Code
3.Point,PAD,Line,Arc数据结构
/// <summary>
/// 精简 PAD 数据类型
/// </summary>
public struct gPP
{
public gPP(double x_val, double y_val, double width_)
{
this.p = new gPoint(x_val, y_val);
this.symbols = "r";
this.width = width_;
}
public gPP(gPoint p_, double width_)
{
this.p = p_;
this.symbols = "r";
this.width = width_;
}
public gPP(gPoint p_, string symbols_, double width_)
{
this.p = p_;
this.symbols = symbols_;
this.width = width_;
}
public gPoint p;
public string symbols;
public double width;
public static gPP operator +(gPP p1, gPP p2)
{
p1.p += p2.p;
return p1;
}
public static gPP operator +(gPP p1, gPoint p2)
{
p1.p += p2;
return p1;
}
public static gPP operator -(gPP p1, gPP p2)
{
p1.p -= p2.p;
return p1;
}
public static gPP operator -(gPP p1, gPoint p2)
{
p1.p -= p2;
return p1;
}
}
/// <summary>
/// 点 数据类型 (XY)
/// </summary>
public struct gPoint
{
public gPoint(gPoint p_)
{
this.x = p_.x;
this.y = p_.y;
}
public gPoint(double x_val, double y_val)
{
this.x = x_val;
this.y = y_val;
}
public double x;
public double y;
public static gPoint operator +(gPoint p1, gPoint p2)
{
p1.x += p2.x;
p1.y += p2.y;
return p1;
}
public static gPoint operator -(gPoint p1, gPoint p2)
{
p1.x -= p2.x;
p1.y -= p2.y;
return p1;
}
}
/// <summary>
/// Line 数据类型
/// </summary>
public struct gL
{
public gL(double ps_x, double ps_y, double pe_x, double pe_y, double width_)
{
this.ps = new gPoint(ps_x, ps_y);
this.pe = new gPoint(pe_x, pe_y);
this.negative = false;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gL(gPoint ps_, gPoint pe_, double width_)
{
this.ps = ps_;
this.pe = pe_;
this.negative = false;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gL(gPoint ps_, gPoint pe_, string symbols_, double width_)
{
this.ps = ps_;
this.pe = pe_;
this.negative = false;
this.symbols = symbols_;
this.attribut = string.Empty;
this.width = width_;
}
public gPoint ps;
public gPoint pe;
public bool negative;//polarity-- positive negative
public string symbols;
public string attribut;
public double width;
public static gL operator +(gL l1, gPoint move_p)
{
l1.ps += move_p;
l1.pe += move_p;
return l1;
}
public static gL operator +(gL l1, gP move_p)
{
l1.ps += move_p.p;
l1.pe += move_p.p;
return l1;
}
public static gL operator -(gL l1, gPoint move_p)
{
l1.ps -= move_p;
l1.pe -= move_p;
return l1;
}
public static gL operator -(gL l1, gP move_p)
{
l1.ps -= move_p.p;
l1.pe -= move_p.p;
return l1;
}
}
/// <summary>
/// ARC 数据类型
/// </summary>
public struct gA
{
public gA(double ps_x, double ps_y, double pc_x, double pc_y, double pe_x, double pe_y, double width_, bool ccw_)
{
this.ps = new gPoint(ps_x, ps_y);
this.pc = new gPoint(pc_x, pc_y);
this.pe = new gPoint(pe_x, pe_y);
this.negative = false;
this.ccw = ccw_;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gA(gPoint ps_, gPoint pc_, gPoint pe_, double width_, bool ccw_ = false)
{
this.ps = ps_;
this.pc = pc_;
this.pe = pe_;
this.negative = false;
this.ccw = ccw_;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gPoint ps;
public gPoint pe;
public gPoint pc;
public bool negative;//polarity-- positive negative
public bool ccw; //direction-- cw ccw
public string symbols;
public string attribut;
public double width;
public static gA operator +(gA arc1, gPoint move_p)
{
arc1.ps += move_p;
arc1.pe += move_p;
arc1.pc += move_p;
return arc1;
}
public static gA operator +(gA arc1, gP move_p)
{
arc1.ps += move_p.p;
arc1.pe += move_p.p;
arc1.pc += move_p.p;
return arc1;
}
public static gA operator -(gA arc1, gPoint move_p)
{
arc1.ps -= move_p;
arc1.pe -= move_p;
arc1.pc -= move_p;
return arc1;
}
public static gA operator -(gA arc1, gP move_p)
{
arc1.ps -= move_p.p;
arc1.pe -= move_p.p;
arc1.pc -= move_p.p;
return arc1;
}
}
View Code