Files
AohDrllTools/Docs/槽孔实际钻孔孔数相关资料/文章2.txt
2025-12-07 20:25:27 +08:00

449 lines
14 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

PCB genesis Slot槽转钻孔(不用G85命令)实现方法
PCB钻Slot槽一般都采用G85命令钻槽孔,而采用G85命令工程CAM无法准确的知道Slot槽钻多少个孔,并不能决定钻槽孔的顺序,因为采用G85命令钻孔密度与钻槽顺序由钻机本身决定的.在这里介绍一种如果不用G85命令,如何将Slot槽生成多个钻孔。
一.我们先了解一下G85命令钻槽
   钻孔顺序
 
 
      孔密度
连一篇文章有关于Slot槽孔数计算方式  https://www.cnblogs.com/pcbren/p/9379178.html
二.求解思路
     1.通过孔密度,求出孔与孔中心距离
     2.再以Slot槽的一端做为起点增量值(孔中心距),方位角(Slot槽的方位角),逐个求出下一个钻孔位置.直到到达Slot槽终点节止。
三.C#简易代码实现:
1.Slot槽转钻孔代码(这里段代码实现将Slot槽转为钻孔,钻孔顺序是一个SLOT槽依次逐个从头钻到头尾,和G85命令钻槽顺序不一样)
string drilllayer = "drl";
gLayer layer = g.getFEATURES($"{drilllayer}", g.STEP, g.JOB, "mm", true);
List<gPP> pList = new List<gPP>();
foreach (var line in layer.Llist)
{
var HoleCenterDi = calc2.p_Convex(line.width * 0.0005);
pList.AddRange(calc2.l_2Plist(line, HoleCenterDi, true));
}
foreach (var arc in layer.Alist)
{
var HoleCenterDi = calc2.p_Convex(arc.width * 0.0005);
pList.AddRange(calc2.a_2Plist(arc, HoleCenterDi,2, true));
}
addCOM.pad(pList);
View Code
2.计算函数
/// <summary>
/// 通过孔半径与凸高位求 孔中心距
/// </summary>
/// <param name="Rradius">孔半径</param>
/// <param name="tol_">凸位高度值</param>
/// <returns></returns>
public double p_Convex(double Rradius, double tol_ = 0.0127)
{
return Math.Sqrt(Math.Pow(Rradius, 2) - Math.Pow(Rradius - tol_, 2)) * 2;
}
/// <summary>
/// 线Line 转点P组集
/// </summary>
/// <param name="l"></param>
/// <param name="len_">点的间距</param>
/// <returns></returns>
public List<gPP> l_2Plist(gL l, double len_ = 0.1d, bool is_avg = false)
{
List<gPP> list_point = new List<gPP>();//采用优先占用线两端 如果有从线的一端出发增量间距后续再做更改
double line_len = l_Length(l);
gPP tempP;
tempP.p = l.ps;
tempP.symbols = l.symbols;
tempP.width = l.width;
list_point.Add(tempP);
int avg_count = (int)(Math.Ceiling(line_len / len_)) - 1;
if (avg_count > 1)
{
if (is_avg)
len_ = line_len / avg_count;
double angle_ = p_ang(l.ps, l.pe);
for (int i = 0; i < avg_count; i++)
{
tempP = p_val_ang(tempP, len_, angle_);
list_point.Add(tempP);
}
}
tempP.p = l.pe;
list_point.Add(tempP);
return list_point;
}
/// <summary>
/// 求方位角
/// </summary>
/// <param name="ps"></param>
/// <param name="pe"></param>
/// <returns></returns>
public double p_ang(gPoint ps, gPoint pe)
{
double a_ang = Math.Atan((pe.y - ps.y) / (pe.x - ps.x)) / Math.PI * 180;
//象限角 转方位角 计算所属象限 并求得方位角
if (pe.x >= ps.x && pe.y >= ps.y) //↗ 第一象限
{
return a_ang;
}
else if (!(pe.x >= ps.x) && pe.y >= ps.y) // ↖ 第二象限
{
return a_ang + 180;
}
else if (!(pe.x >= ps.x) && !(pe.y >= ps.y)) //↙ 第三象限
{
return a_ang + 180;
}
else if (pe.x >= ps.x && !(pe.y >= ps.y)) // ↘ 第四象限
{
return a_ang + 360;
}
else
{
return a_ang;
}
}//求方位角
/// <summary>
/// 求增量坐标
/// </summary>
/// <param name="ps">起点</param>
/// <param name="val">增量值</param>
/// <param name="ang_direction">角度</param>
/// <returns></returns>
public gPP p_val_ang(gPP ps, double val, double ang_direction)
{
gPP pe = ps;
pe.p.x = ps.p.x + val * Math.Cos(ang_direction * Math.PI / 180);
pe.p.y = ps.p.y + val * Math.Sin(ang_direction * Math.PI / 180);
return pe;
}
/// <summary>
/// 求线Line长度
/// </summary>
/// <param name="l"></param>
/// <param name="is_calc_width"></param>
/// <returns></returns>
public double l_Length(gL l, bool is_calc_width = false)
{
if (is_calc_width)
return Math.Sqrt((l.ps.x - l.pe.x) * (l.ps.x - l.pe.x) + (l.ps.y - l.pe.y) * (l.ps.y - l.pe.y)) + l.width / 1000;
else
return Math.Sqrt((l.ps.x - l.pe.x) * (l.ps.x - l.pe.x) + (l.ps.y - l.pe.y) * (l.ps.y - l.pe.y));
}
/// <summary>
/// 弧Arc 转点P组集
/// </summary>
/// <param name="a"></param>
/// <param name="val_">此数值表示:分段数值</param>
/// <param name="type_">代表值数值类型 【0】弧长 【1】角度 【2】弦长 </param>
/// <param name="is_avg">是否平均分布 </param>
/// <returns></returns>
public List<gPP> a_2Plist(gA a, double val_ = 0.1d, int type_ = 0, bool is_avg = false)
{
List<gPP> list_point = new List<gPP>();
gPP tempP;
tempP.p = a.ps;
tempP.symbols = a.symbols;
tempP.width = a.width;
list_point.Add(tempP);
double avg_count;
double angle_val = 0;
double rad_ = p2p_di(a.pc, a.pe);
double sum_alge = a_Angle(a);
if (type_ == 1) // 【1】角度
{
angle_val = val_;
avg_count = (int)(Math.Ceiling(sum_alge / angle_val)) - 1; // 总角度/单角度
}
else if (type_ == 2) //【2】弦长
{
angle_val = Math.Asin(val_ / (rad_ * 2)) * 360 / pi;
avg_count = (int)(Math.Ceiling(sum_alge / angle_val)) - 1; // 总角度/单角度
}
else // 【0】弧长
{
angle_val = val_ * 180 / (pi * rad_);
avg_count = (int)(Math.Ceiling(sum_alge / angle_val)) - 1; // 总角度/单角度
//avg_count = (int)(Math.Ceiling(a_Lenght(a) / val_)) - 1; // 或 总弧长/单弧长
}
if (is_avg)
angle_val = sum_alge / avg_count;
if (avg_count > 1)
{
gPP centerP = tempP;
centerP.p = a.pc;
double angle_s = p_ang(a.pc, a.ps);
if (a.ccw) { angle_val = 0 - angle_val; }
for (int i = 1; i < avg_count; i++)
{
tempP = p_val_ang(centerP, rad_, angle_s - angle_val * i);
list_point.Add(tempP);
}
}
if (!(zero(a.ps.x - a.pe.x) && zero(a.ps.y - a.pe.y)))
{
tempP.p = a.pe;
list_point.Add(tempP);
}
return list_point;
}
/// <summary>
/// 返回两点之间欧氏距离
/// </summary>
/// <param name="p1"></param>
/// <param name="p2"></param>
/// <returns></returns>
public double p2p_di(gPoint p1, gPoint p2)
{
return Math.Sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}
/// <summary>
/// 求弧Arc圆心角 //后续改进 用叉积 与3P求角度求解 验证哪个效率高
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
public double a_Angle(gA a)
{
double angle_s, angle_e, angle_sum;
if (a.ccw)
{
angle_s = p_ang(a.pc, a.pe);
angle_e = p_ang(a.pc, a.ps);
}
else
{
angle_s = p_ang(a.pc, a.ps);
angle_e = p_ang(a.pc, a.pe);
}
if (angle_s == 360) { angle_s = 0; }
if (angle_e >= angle_s)
angle_sum = 360 - Math.Abs(angle_s - angle_e);
else
angle_sum = Math.Abs(angle_s - angle_e);
return angle_sum;
}
View Code
3.Point,PAD,Line,Arc数据结构
/// <summary>
/// 精简 PAD 数据类型
/// </summary>
public struct gPP
{
public gPP(double x_val, double y_val, double width_)
{
this.p = new gPoint(x_val, y_val);
this.symbols = "r";
this.width = width_;
}
public gPP(gPoint p_, double width_)
{
this.p = p_;
this.symbols = "r";
this.width = width_;
}
public gPP(gPoint p_, string symbols_, double width_)
{
this.p = p_;
this.symbols = symbols_;
this.width = width_;
}
public gPoint p;
public string symbols;
public double width;
public static gPP operator +(gPP p1, gPP p2)
{
p1.p += p2.p;
return p1;
}
public static gPP operator +(gPP p1, gPoint p2)
{
p1.p += p2;
return p1;
}
public static gPP operator -(gPP p1, gPP p2)
{
p1.p -= p2.p;
return p1;
}
public static gPP operator -(gPP p1, gPoint p2)
{
p1.p -= p2;
return p1;
}
}
/// <summary>
/// 点 数据类型 (XY)
/// </summary>
public struct gPoint
{
public gPoint(gPoint p_)
{
this.x = p_.x;
this.y = p_.y;
}
public gPoint(double x_val, double y_val)
{
this.x = x_val;
this.y = y_val;
}
public double x;
public double y;
public static gPoint operator +(gPoint p1, gPoint p2)
{
p1.x += p2.x;
p1.y += p2.y;
return p1;
}
public static gPoint operator -(gPoint p1, gPoint p2)
{
p1.x -= p2.x;
p1.y -= p2.y;
return p1;
}
}
/// <summary>
/// Line 数据类型
/// </summary>
public struct gL
{
public gL(double ps_x, double ps_y, double pe_x, double pe_y, double width_)
{
this.ps = new gPoint(ps_x, ps_y);
this.pe = new gPoint(pe_x, pe_y);
this.negative = false;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gL(gPoint ps_, gPoint pe_, double width_)
{
this.ps = ps_;
this.pe = pe_;
this.negative = false;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gL(gPoint ps_, gPoint pe_, string symbols_, double width_)
{
this.ps = ps_;
this.pe = pe_;
this.negative = false;
this.symbols = symbols_;
this.attribut = string.Empty;
this.width = width_;
}
public gPoint ps;
public gPoint pe;
public bool negative;//polarity-- positive negative
public string symbols;
public string attribut;
public double width;
public static gL operator +(gL l1, gPoint move_p)
{
l1.ps += move_p;
l1.pe += move_p;
return l1;
}
public static gL operator +(gL l1, gP move_p)
{
l1.ps += move_p.p;
l1.pe += move_p.p;
return l1;
}
public static gL operator -(gL l1, gPoint move_p)
{
l1.ps -= move_p;
l1.pe -= move_p;
return l1;
}
public static gL operator -(gL l1, gP move_p)
{
l1.ps -= move_p.p;
l1.pe -= move_p.p;
return l1;
}
}
/// <summary>
/// ARC 数据类型
/// </summary>
public struct gA
{
public gA(double ps_x, double ps_y, double pc_x, double pc_y, double pe_x, double pe_y, double width_, bool ccw_)
{
this.ps = new gPoint(ps_x, ps_y);
this.pc = new gPoint(pc_x, pc_y);
this.pe = new gPoint(pe_x, pe_y);
this.negative = false;
this.ccw = ccw_;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gA(gPoint ps_, gPoint pc_, gPoint pe_, double width_, bool ccw_ = false)
{
this.ps = ps_;
this.pc = pc_;
this.pe = pe_;
this.negative = false;
this.ccw = ccw_;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gPoint ps;
public gPoint pe;
public gPoint pc;
public bool negative;//polarity-- positive negative
public bool ccw; //direction-- cw ccw
public string symbols;
public string attribut;
public double width;
public static gA operator +(gA arc1, gPoint move_p)
{
arc1.ps += move_p;
arc1.pe += move_p;
arc1.pc += move_p;
return arc1;
}
public static gA operator +(gA arc1, gP move_p)
{
arc1.ps += move_p.p;
arc1.pe += move_p.p;
arc1.pc += move_p.p;
return arc1;
}
public static gA operator -(gA arc1, gPoint move_p)
{
arc1.ps -= move_p;
arc1.pe -= move_p;
arc1.pc -= move_p;
return arc1;
}
public static gA operator -(gA arc1, gP move_p)
{
arc1.ps -= move_p.p;
arc1.pe -= move_p.p;
arc1.pc -= move_p.p;
return arc1;
}
}
View Code