Files
2025-12-07 20:25:27 +08:00

280 lines
7.9 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

PCB SLOT槽孔数量计算方法,同CAM350孔数一致 实现方法
最近有好几个写脚本的朋友问我,SLOT槽孔孔的如何计算的要求孔数与CAM350孔数保持一致。
前几年通过在CAM350里面不断测试结果是CAM 350中SLOT槽孔孔与孔之间最高位凸位高度值为0.0127mm
这里将计算方法分享一下,下次有同样的问题可以看此篇文章即可得到答案了。哈。。。。
通过这个凸位值就很好的计算出SLOT槽孔数了,弧型SLOT槽的原理也是同样的。
一.SLOT槽为线段求解SLOT槽孔数  (Mod类在后面代码中)
/// <summary>
/// 求线Line slot槽孔数 同CAM350一致)
/// </summary>
/// <param name="l"></param>
/// <param name="tol_">凸位高度值</param>
/// <returns></returns>
public int l_2hole_count(gL l, double tol_ = 0.0127)
{
double r, center_L, hole_L;
r = l.width / 1000 * 0.5;
center_L = p2p_di(l.ps, l.pe);
hole_L = Math.Sqrt(Math.Pow(r, 2) - Math.Pow(r - tol_, 2)) * 2;
return (int)Math.Abs(Math.Floor(-center_L / hole_L)) + 1;
}
/// <summary>
/// 返回两点之间欧氏距离
/// </summary>
/// <param name="p1"></param>
/// <param name="p2"></param>
/// <returns></returns>
public double p2p_di(gPoint p1, gPoint p2)
{
return Math.Sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}
二.SLOT槽为弧段求解SLOT槽孔数  (Mod类在后面代码中)
/// <summary>
/// 求弧Arc slot槽孔数 同CAM350一致)
/// </summary>
/// <param name="a"></param>
/// <param name="tol_">凸位高度值</param>
/// <returns></returns>
public int a_2hole_count(gA a, double tol_ = 0.0127)
{
double r, center_L, hole_L;
r = a.width / 1000 * 0.5;
center_L = a_Length(a);
hole_L = Math.Sqrt(Math.Pow(r, 2) - Math.Pow(r - tol_, 2)) * 2;
return (int)Math.Abs(Math.Floor(-center_L / hole_L)) + 1;
}
/// <summary>
/// 求弧Arc长度
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
public double a_Length(gA a)
{
return pi / 180 * p2p_di(a.pc, a.ps) * a_Angle(a);
}
/// <summary>
/// 求弧Arc圆心角 //后续改进 用叉积 与3P求角度求解 验证哪个效率高
/// </summary>
/// <param name="a"></param>
/// <returns></returns>
public double a_Angle(gA a)
{
double angle_s, angle_e, angle_sum;
if (a.ccw)
{
angle_s = p_ang(a.pc, a.pe);
angle_e = p_ang(a.pc, a.ps);
}
else
{
angle_s = p_ang(a.pc, a.ps);
angle_e = p_ang(a.pc, a.pe);
}
if (angle_s == 360) { angle_s = 0; }
if (angle_e >= angle_s)
angle_sum = 360 - Math.Abs(angle_s - angle_e);
else
angle_sum = Math.Abs(angle_s - angle_e);
return angle_sum;
}
三.使用的Mod类
     线 mod类型
/// <summary>
/// Line 数据类型
/// </summary>
public struct gL
{
public gL(double ps_x, double ps_y, double pe_x, double pe_y, double width_)
{
this.ps = new gPoint(ps_x, ps_y);
this.pe = new gPoint(pe_x, pe_y);
this.negative = false;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gL(gPoint ps_, gPoint pe_, double width_)
{
this.ps = ps_;
this.pe = pe_;
this.negative = false;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gL(gPoint ps_, gPoint pe_, string symbols_, double width_)
{
this.ps = ps_;
this.pe = pe_;
this.negative = false;
this.symbols = symbols_;
this.attribut = string.Empty;
this.width = width_;
}
public gPoint ps;
public gPoint pe;
public bool negative;//polarity-- positive negative
public string symbols;
public string attribut;
public double width;
public static gL operator +(gL l1, gPoint move_p)
{
l1.ps += move_p;
l1.pe += move_p;
return l1;
}
public static gL operator +(gL l1, gPP move_p)
{
l1.ps += move_p.p;
l1.pe += move_p.p;
return l1;
}
public static gL operator +(gL l1, gP move_p)
{
l1.ps += move_p.p;
l1.pe += move_p.p;
return l1;
}
public static gL operator -(gL l1, gPoint move_p)
{
l1.ps -= move_p;
l1.pe -= move_p;
return l1;
}
public static gL operator -(gL l1, gPP move_p)
{
l1.ps -= move_p.p;
l1.pe -= move_p.p;
return l1;
}
public static gL operator -(gL l1, gP move_p)
{
l1.ps -= move_p.p;
l1.pe -= move_p.p;
return l1;
}
}
     弧 mod类型
/// <summary>
/// ARC 数据类型
/// </summary>
public struct gA
{
public gA(double ps_x, double ps_y, double pc_x, double pc_y, double pe_x, double pe_y, double width_, bool ccw_)
{
this.ps = new gPoint(ps_x, ps_y);
this.pc = new gPoint(pc_x, pc_y);
this.pe = new gPoint(pe_x, pe_y);
this.negative = false;
this.ccw = ccw_;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gA(gPoint ps_, gPoint pc_, gPoint pe_, double width_, bool ccw_=false)
{
this.ps = ps_;
this.pc = pc_;
this.pe = pe_;
this.negative = false;
this.ccw = ccw_;
this.symbols = "r";
this.attribut = string.Empty;
this.width = width_;
}
public gPoint ps;
public gPoint pe;
public gPoint pc;
public bool negative;//polarity-- positive negative
public bool ccw; //direction-- cw ccw
public string symbols;
public string attribut;
public double width;
public static gA operator +(gA arc1, gPoint move_p)
{
arc1.ps += move_p;
arc1.pe += move_p;
arc1.pc += move_p;
return arc1;
}
public static gA operator +(gA arc1, gPP move_p)
{
arc1.ps += move_p.p;
arc1.pe += move_p.p;
arc1.pc += move_p.p;
return arc1;
}
public static gA operator +(gA arc1, gP move_p)
{
arc1.ps += move_p.p;
arc1.pe += move_p.p;
arc1.pc += move_p.p;
return arc1;
}
public static gA operator -(gA arc1, gPoint move_p)
{
arc1.ps -= move_p;
arc1.pe -= move_p;
arc1.pc -= move_p;
return arc1;
}
public static gA operator -(gA arc1, gPP move_p)
{
arc1.ps -= move_p.p;
arc1.pe -= move_p.p;
arc1.pc -= move_p.p;
return arc1;
}
public static gA operator -(gA arc1, gP move_p)
{
arc1.ps -= move_p.p;
arc1.pe -= move_p.p;
arc1.pc -= move_p.p;
return arc1;
}
}
     点 mod类型
/// <summary>
/// 点 数据类型 (XY)
/// </summary>
public struct gPoint
{
public gPoint(gPoint p_)
{
this.x = p_.x;
this.y = p_.y;
}
public gPoint(double x_val, double y_val)
{
this.x = x_val;
this.y = y_val;
}
public double x;
public double y;
public static gPoint operator +(gPoint p1, gPoint p2)
{
p1.x += p2.x;
p1.y += p2.y;
return p1;
}
public static gPoint operator -(gPoint p1, gPoint p2)
{
p1.x -= p2.x;
p1.y -= p2.y;
return p1;
}
}